Complex Treatments in Proton Therapy
- Selected Topics

Educational Workshop PTCOG 46, May 18-20, Wanjie, China

Martin Bues, PhD
Proton Therapy
M.D. Anderson Cancer Center
Outline

• **Topic 1:** Proton Beam scanning and Intensity modulated proton therapy (20 min.)
• **Topic 2:** Introduction to motion management (10 min.)
• **Topic 4:** Quality assurance of spot scanning treatments (10 min.)
• **Discussion:** (10 min.)

Martin Bues, PhD, PTCOG 46 Educational Workshop, Wanjie, China
Topic 1: Proton Beam Scanning and Intensity Modulated Proton Therapy
The Passive Scattering Mode of Proton Beam Delivery
The Pencil Beam Scanning Mode of Proton Beam Delivery

Active Scanning

Dynamic changes of the proton energy

Dynamically varying sweeping magnets (in and out of plane)

No compensator, and generally no collimator needed

Evolution of the lateral beam profile

No wasted protons
Motivation for Pencil Beam Scanning

• Fewer neutrons
• Sparing of healthy tissues proximal to the target
• Intensity modulated proton therapy (IMPT)
Step and shoot delivery of proton beam scanning

- Repeating many static irradiations
- Speedy beam switching with RF Driven Extraction technique

Dynamic scanning is achieved with *discrete spot scanning method*.

Hitachi, Ltd.
Timing Parameters for PBS with a Synchrotron

Acceleration
Extraction
Deceleration

Beam Energy

Extracted
Beam Intensity

layer change

layer change

layer change

< 5s

< 2s
Scanning Nozzle Design

- Beam Profile Monitor
- Scanning Magnets
- Helium Chamber
- Spot Position Monitor
- Dose Monitor 1, 2

Martin Bues, PhD, PTCOG 46 Educational Workshop, Wanjie, China
Scanning Nozzle Design (Cont.)
Scanning Nozzle Design (Cont.)
Dose Monitoring Equipment

• Profile monitor
 – Multi-wired ionization chamber
 – Monitors correct incidence and shape of beam at entrance of the nozzle

• Sub dose monitor
 – Independent check for Main dose Monitor

• Main dose monitor
 – Parallel plate ionization chamber
 – Monitors number of protons delivered spot by spot
Dose Monitoring Equipment (Cont.)

• Spot position monitor
 – Multi wired ionization chamber
 – Monitors spot position and spot size

• Spot monitor unit constraints
 – Maximum MU: 0.04 MU
 – Minimum MU: 0.005 MU
 – Resolution: 0.0001 MU = 2 pC monitor chamber charge (= 13 fC proton charge @ 175 MeV)
Multipainting

• Locations in the target are visited by pencil beams of the same energy and deflection, **several times**

• Advantages: Reduction of dose error, Compensation for organ motion
Spot Scanning vs IMPT

• Spot Scanning and IMPT are not the same thing!
• Spot scanning is a proton therapy modality which can be used to deliver homogeneous or in homogeneous dose distributions
• IMPT is the deliberate delivery of inhomogeneous proton fields, which add up to a homogeneous dose distribution,
IMPT Treatment Planning

PS plan

IMPT plan

Martin Bues, PhD, PTCOG 46 Educational Workshop, Wanjie, China
IMPT planning steps: Prostate

• IMPT planning parameters:
 – 75.60 CGE prescribed to 100 % line encompassing the CTV
 – Lateral opposed beams treated with rectal balloon
 – CTV includes entire prostate and, in most cases, proximal seminal vesicles and distal seminal vesicles
 – Extended CTV (ECTV), 8mm distal and proximal, 5mm superior and inferior, 8mm anterior, 5mm posterior
 – 5mm isotropic margin surrounding ECTV
EWING’S SARCOMA

IMPT

IMXT

Lomax, PSI
Topic 2: Introduction to Motion Management
Two Types of Motion

• **Interfraction Motion**
 – Variations in patient geometry *from fraction to fraction*
 • Imperfect reproducibility of patient setup
 • Internal patient changes (e.g. bladder filling, stomach filling, peristalsis, weight gain/loss)

• **Intrafraction Motion**
 – Variations in patient geometry *within one fraction*
 • Patient breathing
Motion due to breathing
4D CT image acquisition

Tracking camera and in-room viewfinder

PC workstation

Martin Bues, PhD, PTCOG 46 Educational Workshop, Wanjie, China
4D CT

• 10 3D CT image sets, T_0, \ldots, T_{90}, corresponding to 10 phases in the breathing cycle of the patient

• Average CT, the \textit{voxel by voxel} average over T_0, \ldots, T_{90}.

• Other 3D image sets, e.g. maximum intensity projection.
Two modes of intrafractional motion management

• Passive motion management
 – Fully understand the effects of motion on the dose delivery and plan accordingly
 – Example: 4D-CT based proton planning

• Active motion management
 – Fully understand the effects of motion on dose delivery
 – Modify dose delivery process to minimize these effects
 – Examples: Breath hold, gating, multi-painting, tumor tracking, anesthesia, …
Treatment planning for lung w/o gating for passive scattering at PTC-H

1. Acquires 4D-CT
2. Delineate target on all breathing phases:
 \[T_{T_0}, \ldots, T_{T_9} \]
3. Form the union of all target, internal gross target volume (IGTV):
 \[IGTV = T_{T_0} \cup \ldots \cup T_{T_9} \]
4. Transfer IGTV contours onto average CT.
5. Plan for IGTV on average CT same as for static target.
6. Verify result of planning process on all/selected breathing phases
7. Repeat process if significant changes in patient anatomy are suspected
Gating Simulation

![Graph showing gating simulation](image-url)
Gating Hardware on Hitachi PROBEAT System

Diagram showing the setup of gating hardware with various components connected through networks and hardwired lines.
Topic 4: Quality Assurance
Areas of Quality Assurance

• Hardware QA: Proton Beam delivery machine, CT scanner, ...
 – Acceptance test
 – Constancy checks

• Treatment Planning System QA
 – Acceptance test
 – Dose accuracy test

• Patient specific QA
 – Appropriateness of patients specific devices
 – Patient specific proton beam dosimetry
Basic Question of QA for scanning patients

- Are all points in the patient receiving the dose approved by the physician?
Basic Question of QA for scanning patients

• Are all points in the patient receiving the dose approved by the physician?

• Guard against two modes of failure:
 – Treatment planning system (TPS) computes incorrect machine parameters such as spot positions, spot monitor units (see discussion)
 – Hardware fails to deliver what was computed by TPS
Added challenge of scanning vs. passive scattering

• Scanning has more free parameters, hence more can go wrong

• Scanning dose application varies in space and time
 • Scanning dose at a single point not an indicator of dose elsewhere.
 • Accumulated scanning dose does not scale linearly with time.
3D approaches

• Ideal solution: Measure dose delivered during entire beam delivery at all points in the patient
 – Impractical? (use positron emission tomography, MGH, GSI)
 – If not in the patient, in a phantom? (scintillator, MGH)
1D approach taken at Paul Scherrer Institute (PSI)

- Array of 2x13 ionization chambers arranged in orthogonal lines perpendicular to beam direction.

Lomax et al., Med. Phys. 31 (11), 2004
IC array

Water column with 26 small ionization chambers of 0.1 ccm

Dose box

Eros Pedroni
2D phantom dosimeter developed at PSI

Boon et al., Med. Phys. 27 (10), 2000

Martin Bues, PhD, PTCOG 46 Educational Workshop, Wanjie, China
Scintillating screen viewed with a CCD through a 45° mirror – ideal for non homogeneous dose distributions

WER 6.65 CM

WE 7.82 CM

Measurement vs Calculation

W= 6.65 cm

W= 7.82 cm

Eros Pedroni
Fluence based proton scanning QA – under development

- Measure proton fluence in air for each energy separately.
- Compare measured fluence to planned fluence.
- Feed measured fluence into dose calculation algorithm (TPS or Monte Carlo) and compute dose on Patient CT and phantom.
- Determine appropriateness of deliverable treatment based on Patient CT calculation.
- Measure dose in phantom.
- Check performance of TPS by comparing predicted and measured water phantom dose.
PTC-H Lanex CCD device

Martin Bues, PhD, PTCOG 46 Educational Workshop, Wanjie, China
Desired Fluence map for prostate IMPT field
Film dosimetry using EBT Gafchromic film

Martin Bues, PhD, PTCOG 46 Educational Workshop, Wanjie, China