A comparative treatment planning study of IMPT and IMXT for cervical cancer

M. Ericsson, A. Murman, H. Rehbinder
RaySearch Laboratories AB, Stockholm, Sweden
www.raysearchlabs.com

P. Nilsson, P. Engström
Lund University Hospital, Dept. of Radiation Physics, Lund, Sweden

M. Bjurberg
Lund University Hospital, Dept. of Oncology, Lund, Sweden
Introduction

- The aim of this work was to compare intensity modulated proton therapy (IMPT) planning with intensity modulated photon therapy (IMXT) planning for patients with cancer of the cervix.

- All the treatment planning were optimized with a new software, ORBIT Workstation, developed by RaySearch Laboratories AB.

- IMPT has been investigated for various tumour sites, but the use of this technique in treatment of cervical cancer is rather unexplored.

- IMPT for cervical cancer has potential benefits due to large target volumes and organs at risk adjacent to the tumour.
Materials and Methods: Patient data

Patient data

- 4 patients were selected from a clinical database.

- Contours for each dataset:
 - PTV (based on a 1.5 cm margin to the CTV)
 - Bladder and rectum
 - Small bowel
 - Femoral heads

- The small bowel was grossly estimated and the other OARs were delineated according to generally accepted clinical practice by an oncologist.

- In average 64% of the bladder and 59% of the rectum were overlapped by the PTV.
Materials and Methods: Research software

- ORBIT Workstation is a stand-alone Windows-based software, developed in C++.

- Runs on a standard PC or high performance laptop.

- ORBIT Workstation is not used clinically and is intended to serve as an environment for research and development.
The software has functionality within the following fields:

- **standard IMXT optimization**
 - direct optimization of step-and-shoot segments (DSS)
 - gantry angle optimization
- **adaptive radiation therapy**
 - 4D architecture and GUI
 - deformable dose accumulation
 - replanning based on accumulated dose and organ motion prediction
- **biological optimization**
 - Poisson-LQ TCP models
 - Poisson-LQ and LKB based NTCP models
 - EUD
- **proton beam scan patterns**
Materials and Methods: Treatment planning software

Optimization graph

DVH view

Patient views

Fluence view
Materials and Methods: Planning

46.8 Gy or CGy were delivered in 26 fractions

- **IMXT planning**
 - 7 equispaced beams
 - (0°, 51°, 103°, 154°, 206°, 257°, 308°)
 - 90 segments in total.
 - Direct optimization of step-and-shoot segment shapes and weights.

- **IMPT planning**
 - 4 equispaced beams
 - (45°, 135°, 225°, 315°)
 - 25 energy levels for each beam
Materials and Methods: Evaluation criteria

- Target dose homogeneity criteria to PTV was defined as: $D_{100} > 95\%, D_{95} > 100\%, D_{\text{max}} < 107\%$ of prescribed dose.

- Irradiated volume, defined as V_{50}

- Treated volume, defined as V_{95}

- RTOG0418-specified evaluation parameters
 - Bladder D_{60}
 - Rectum D_{35}
 - Small bowel D_{30}
 - Femoral heads D_{15}

- All patients were planned so that target coverage was achieved.

- Comparison was made based on OAR protection.
Results: Min, Mean and Max dose differences

The min, mean and max dose differences between IMXT and IMPT, normalized to the photon plans.

<table>
<thead>
<tr>
<th>Volume</th>
<th>Dose level</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectum-PTV</td>
<td>D$_{60}$</td>
<td>10%</td>
<td>26%</td>
<td>45%</td>
</tr>
<tr>
<td>Bladder-PTV</td>
<td>D$_{35}$</td>
<td>7%</td>
<td>16%</td>
<td>24%</td>
</tr>
<tr>
<td>Small Bowel</td>
<td>D$_{30}$</td>
<td>45%</td>
<td>49%</td>
<td>54%</td>
</tr>
<tr>
<td>Femoral heads</td>
<td>D$_{15}$</td>
<td>53%</td>
<td>61%</td>
<td>70%</td>
</tr>
</tbody>
</table>

The entire bladder and rectum volume did not exhibit any major difference in D$_{60}$ and D$_{35}$, respectively.
Results: Min, Mean and Max dose differences

The min, mean and max dose differences normalized to the photon plans.

<table>
<thead>
<tr>
<th>Volume</th>
<th>Dose level</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated volume</td>
<td>V_{95}</td>
<td>15%</td>
<td>22%</td>
<td>32%</td>
</tr>
<tr>
<td>Irradiated volume</td>
<td>V_{50}</td>
<td>37%</td>
<td>43%</td>
<td>48%</td>
</tr>
<tr>
<td>PTV-surrounding tissue</td>
<td>D_{mean}</td>
<td>39%</td>
<td>43%</td>
<td>48%</td>
</tr>
</tbody>
</table>
Results: Equivalent Uniform Dose (EUD)

The relative min, mean and max EUD differences.

<table>
<thead>
<tr>
<th>Volume</th>
<th>a-value</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV</td>
<td>-10</td>
<td>-0.06%</td>
<td>0.05%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Bladder<sup>1</sup></td>
<td>2</td>
<td>3%</td>
<td>7%</td>
<td>13%</td>
</tr>
<tr>
<td>Femoral Heads<sup>1</sup></td>
<td>4</td>
<td>50%</td>
<td>60%</td>
<td>68%</td>
</tr>
<tr>
<td>Rectum<sup>1</sup></td>
<td>8.33</td>
<td>0%</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Small bowel<sup>1</sup></td>
<td>6.67</td>
<td>29%</td>
<td>32%</td>
<td>37%</td>
</tr>
</tbody>
</table>

Results: Equivalent Uniform Dose (EUD)

The relative min, mean and max EUD differences.

<table>
<thead>
<tr>
<th>Volume</th>
<th>a-value</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV</td>
<td>-10</td>
<td>-0.06%</td>
<td>0.05%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Bladder1</td>
<td>2</td>
<td>3%</td>
<td>7%</td>
<td>13%</td>
</tr>
<tr>
<td>Femoral Heads1</td>
<td>4</td>
<td>50%</td>
<td>60%</td>
<td>68%</td>
</tr>
<tr>
<td>Rectum1</td>
<td>8.33</td>
<td>0%</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Small bowel1</td>
<td>6.67</td>
<td>29%</td>
<td>32%</td>
<td>37%</td>
</tr>
</tbody>
</table>

Results: DVH

Accumulated dose for photons (solid) and protons (dotted)
Summary and discussion

Summary

- Research software for IMPT treatment planning has been developed and cervical cancer has been studied.

- The IMPT plans exhibited significant dose reduction to the small bowel and femoral heads compared to IMXT, with preserved target coverage.

- IMPT gives, with same target dose homogeneity, significantly lower irradiated and treated volumes compared to the photon techniques.

- Results from this study suggest that the IMPT technique is suitable for tumors of the cervix.

Further work

- Clinically accurate dose calculation, using beam model from Nucletron
- Biology-based fractionation schedule optimization
- Adaptive PT strategies
- Carbon ions