Proton Radiotherapy can Improve Lung Sparing Compare with Photon IMRT

Xiangkui Mu, Jiamin Li, Yingying Tian, Jianguang Zhang

Wanjie Proton Center, Zibo Wanjie Hospital,
Zibo, Shandong, China.

Jinming Yu, Yong Yin, Tonghai Liu, Department of radiation oncology, Shandong cancer hospital & institute, China.

Weiming Cai, Department of radiation oncology, Cancer Hospital,
Chinese Academy of Medical Sciences.
Background & Purpose
Chemo-radiotherapy is the preferred modality for cervical esophageal carcinoma

PRIMARY TREATMENT

- **Esophagectomy**[^g] (preferred for noncervical T1 disease)
- **Definitive chemoradiotherapy**
 - Medically fit[^b], resectable[^c], T1–T3, N0–1, NX, or Stage IVA
 - **RT, 50-50.4 Gy + concurrent chemotherapy (5-FU-based)**

ADJUNCTIVE/ADJUVANT TREATMENT

- **See Clinical Pathological Findings (ESOPH-3)**
- **Esophagectomy[^f] or Palliative treatment, including chemotherapy[^h]**
- **Palliative chemotherapy[^h] and/or endoscopic therapy**

[^g]: Medicaly able to tolerate major abdominal and/or thoracic surgery.
[^c]: Chemoradiotherapy is the preferred modality for cervical esophageal carcinoma.
[^d]: Resectable T4: involvement of pleura, pericardium or diaphragm.
[^f]: Transhiatal or transthoracic, or minimally invasive; gastric reconstruction preferred.
[^i]: Feeding jejunostomy for postoperative nutritional support, generally preferred.
[^h]: See Principles of Systemic Therapy (ESOPH-A).
[^b]: Assessment ≥ 4 weeks, endoscopy with biopsy and brushings.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Challenging of radiotherapy treatment planning
Experience of proton radiotherapy in Esophageal cancer

<table>
<thead>
<tr>
<th>Author year</th>
<th>Patients</th>
<th>results</th>
<th>Conslusion/comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Koyama 2003</td>
<td>Superficial 13 (MD=77.7 Gy) Advanced 17 (MD=80.3 Gy)</td>
<td>OS 60.1M 100% 38.6M 49.0%</td>
<td>Upper Middle Lower Abdominal</td>
</tr>
<tr>
<td>S Sugahara 2005</td>
<td>T1, 23 T2-T4, 23 X+P=69.1-87.4Gy P=75-89.5 Gy</td>
<td>55% 95% 13% 33%</td>
<td>Upper Middle Lower Abdominal</td>
</tr>
</tbody>
</table>

OS = overall survival, DSS = disease specific survival
X+P = combined photon and proton, P = proton only

Sugahara S. IJROBP. Vol. 61, No. 1, pp. 76–84, 2005
The aim of the study

- To evaluate the benefits of proton radiotherapy compare with photon IMRT
- To search proper treatment planning protocol for proton therapy
Patients & methods

- 5 patients
- TPS:
 - Varian Eclipse
- Dose criteria
 - 60Gy to 95% PTV;
 - 45 Gy to spinal cord
- OARs:
 - Lungs
 - whole lung
 - heart
 - Body (for planning comparison only)
- Comparison tools
 - Isodose distribution
 - Dose volume histogram (DVH)
Beam arrangement

Plan 1

Proton plans

Plan 2

Plan 3

Photon IMRT
Results

Table 1. DVH data for GTV and PTV

<table>
<thead>
<tr>
<th></th>
<th>GTV</th>
<th>PTV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMRT</td>
<td>Plan1</td>
</tr>
<tr>
<td>Dose_Min</td>
<td>51.7 (7.0)</td>
<td>42.1 (10.6)</td>
</tr>
<tr>
<td>Dose_Max</td>
<td>69.4 (2.0)</td>
<td>70.1 (4.5)</td>
</tr>
<tr>
<td>Dose_Mean</td>
<td>64.5 (0.9)</td>
<td>62.2 (3.8)</td>
</tr>
</tbody>
</table>

GTV and PTV data with Dose Min, Max, Mean, and standard deviation. The data in brackets are standard deviations.
Table 2. DVH data for OARs

<table>
<thead>
<tr>
<th>OAR</th>
<th>IMRT</th>
<th>Plan1</th>
<th>Plan2</th>
<th>Plan3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal cord</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose Max (>1% volume)</td>
<td>30.9 (8.1)</td>
<td>39.5 (5.7)</td>
<td>6.9 (10.3)</td>
<td>26.4 (6.7)</td>
</tr>
<tr>
<td>Dose Mean</td>
<td>16.4 (4.2)</td>
<td>15.1 (3.6)</td>
<td>0.5 (0.8)</td>
<td>10.9 (3.4)</td>
</tr>
<tr>
<td>Left lung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose Mean</td>
<td>14.4 (5.1)</td>
<td>9.0 (1.6)</td>
<td>9.8 (1.3)</td>
<td>9.6 (1.5)</td>
</tr>
<tr>
<td>V20</td>
<td>30.8 (6.6)</td>
<td>20.7 (3.9)</td>
<td>23.7 (4.9)</td>
<td>18.9 (3.9)</td>
</tr>
<tr>
<td>Right lung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose Mean</td>
<td>13.8 (2.5)</td>
<td>7.7 (2.0)</td>
<td>8.1 (1.6)</td>
<td>8.1 (1.8)</td>
</tr>
<tr>
<td>V20</td>
<td>21.5 (2.8)</td>
<td>16.0 (3.8)</td>
<td>18.4 (2.6)</td>
<td>15.8 (5.2)</td>
</tr>
<tr>
<td>Total lung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose Mean</td>
<td>14.5 (2.6)</td>
<td>8.2 (1.2)</td>
<td>8.8 (0.4)</td>
<td>8.7 (1.0)</td>
</tr>
<tr>
<td>V20</td>
<td>24.9 (4.0)</td>
<td>18.1 (2.4)</td>
<td>20.8 (2.4)</td>
<td>17.4 (3.4)</td>
</tr>
<tr>
<td>Heart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose Max</td>
<td>43.1 (30.7)</td>
<td>51.9 (20.8)</td>
<td>51.4 (19.3)</td>
<td>49.9 (20.0)</td>
</tr>
<tr>
<td>Dose Mean</td>
<td>16.4 (10.9)</td>
<td>6.4 (7.4)</td>
<td>8.7 (10.9)</td>
<td>6.2 (8.1)</td>
</tr>
<tr>
<td>Dose>40Gy</td>
<td>6.2 (6.3)</td>
<td>3.3 (4.0)</td>
<td>7.9 (10.6)</td>
<td>3.7 (4.7)</td>
</tr>
<tr>
<td>Body</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose Max (>1% volume)</td>
<td>66.1 (3.1)</td>
<td>63.4 (4.2)</td>
<td>63.6 (1.5)</td>
<td>62.7 (1.5)</td>
</tr>
<tr>
<td>Dose Mean</td>
<td>13.4 (1.7)</td>
<td>8.2 (1.3)</td>
<td>6.7 (1.4)</td>
<td>7.8 (1.3)</td>
</tr>
</tbody>
</table>

Data in brackets are standard deviation
Patient No. 4: DVHs for GTV and PTV
Patient No. 4: DVHs for OARs
Photon IMRTPlan3
Plan1
Plan2
Plan3
Photon IMRT
Proton plans
40%
70%
90%
Proton plans

Plan 1

Plan 2

Plan 3

Photon IMRT

2007/7/30
Proton plans

Plan 1
40%
70%
90%

Plan 2

Plan 3

Photon IMRT

2007/7/30
Conclusions

- Protons provides the possibility
 - of further sparing lungs and other OARs in cervical esophageal cancer radiotherapy;
 - to escalate radiation dose in PTV or to combine more aggressive chemotherapy.
Conclusions

- of three proton treatment protocols, each technique may be proper for different clinical situations
 - AP-PA technique can give an acceptable dose distribution both in PTV and in surrounding OARs, it is the simplest technique
 - but three beam technique decreases absorbed dose in OARs further, with acceptable work effort in the department.
 - two oblique beams technique can delivery nearly no dose to spinal cord, but increases absorbed dose in lung, therefore it is not a option for clinical purpose, except for re-treatment.