Automatic patient alignment in six degrees of freedom for particle beam treatment

Stefan Walter
MedCom GmbH
Darmstadt, Germany
http://www.medcom-online.de
Automatic patient alignment

Outline

• MedCom
• Motivation
• Patient Position Verification System
• Automatic correction
 • Image Registration
 • Back-projection
• Results & Perspective
MedCom GmbH

Darmstadt, Germany
Overview

• Founded in 1997 as Spin-Off of Fraunhofer IGD
• Manufacturer of Medical Software Systems
 • Radiotherapy planning / treatment
 • Virtual Simulation, Virtual Navigation
 • 3D Ultrasound Acquisition
 • Ultrasound simulator for training & education
• OEM Partner for
 • ESAOTE, Nucletron, …, Varian Accel, … IBA-Worldwide, …
• Products
 • Prosoma (Virtual Simulation)
 • SWIFT (HDR)
 • VeriSuite (PPVS)
Automatic patient alignment

Motivation

• Particle therapy becomes commercial
• Treatment times per patient need to be optimized
• High precision positioning of patient

Need for

• High accurate, fast, reliable, flexible PPVS
• Supervision by Therapist
Automatic patient alignment

PPVS consists of

- **Hardware**
 - X-ray imaging hardware (generator, tubes, digital flat panel receptors)
 - High end PC workstation

- **Software**
 - 2 DRRs (high resolution CT image series of patient)
 - DICOM RT Ion Plan
 - Control of X-ray generator
 - Acquisition of 2 X-ray images
 - Mutual information based image registration
 - Calculation of correction vector (5 or 6 DoF)
 - Connectivity to environment (TCS, DICOM Archive, etc.)
Automatic patient alignment

PPVS: 6 image treatment view
Automatic patient alignment

PPVS: Room view
Automatic patient alignment

Correction calculation overview

Treatment position

Image Registration

Back-projection

Correction Vector & Quality Indicator

$\Delta X / \Delta Y / \Delta Z / \Delta rx / \Delta ry / \Delta rz$
Automatic patient alignment

Input for calculation of correction vector
- Treatment position (from TCS / DICOM RT Ion Plan)
- 2 DRRs calculated on the fly from a CT image series
- 2 X-rays acquired in treatment position
- Calibrated system geometry

Calculation Steps
- 2D Image registration (DRR 1--X-ray 1, DRR 2--X-ray 21)
- Back-projection of shift & rotation to isocenter
- Iterative repetition
- 5/6 DoF
- Quality indicator calculation
Automatic patient alignment

DRRs

- High resolution CT image series
- On the fly calculation during verification
- Perspective volume rendering, ray casting
- Regard of exact treatment (gantry-) system geometry
Automatic patient alignment

System’s geometry
- Determined by a calibration with a phantom
- Position & orientation of DFPs
- Position of X-ray tubes
- SID, SAD
Automatic patient alignment

2D Image registration
• Based on mutual information

\[MI(A, B) = H(A) + H(B) - H(A, B) \]

\[H = - \sum_{g=0}^{G} p_g \ln p_g \]

• „Image statistics“
• Histograms & joint histogram of X-ray n / DRR n
• Robust approach
Automatic patient alignment

2D Image registration

- Minimisation of

\[-Q = -\sum_{i=1}^{N} MI_i^2 \]

- Downhill Simplex parameter selection

Result

- 2D image shift X,Y
- Rotation \(r_z \)
Automatic patient alignment

3D back-projection

Detector A

2D Image shift (right)

Q

Original position

Corrected position

Detector B

2D Image shift (left)

Correctional spatial shift

Source B

Patient support

Source A
Automatic patient alignment

Iterative repetition

• Re-calculation of DRRs for corrected position
• 2D image registration
• Back-projection
• End if correction vector below ε
Automatic patient alignment

Correction calculation overview

CT image series → DRR calculation 2
 Position

X-ray 1 → DRR 1 → 2D Registration 1 → Back-projection
 ∆x, ∆y, r_z

X-ray 2 → DRR 2 → 2D Registration 2
 ∆x, ∆y, r_z

Back-projection

Correction < ε
 Yes
 No
 finished
Automatic patient alignment I
Automatic patient alignment II
Automatic patient alignment III
Quality Indicator

- Probability for correctness of correction vector
- Weighted sum of
 - Difference image of DRR--X-ray image
 - Steepness of gradient of MI
 - Error in Backprojection
Automatic patient alignment

Results & Perspective

• Fast automatic matching
• Supportive calculation of QI
• Accuracy 0,5-1mm
• Manual intervention possible

• Installed in RPTC, Munich
• Clinical experience
• More features, e.g. automatically detected fiducial markers
Automatic patient alignment

www.medcom-online.de
Automatic patient alignment

Thank you for your attention.