Particle Therapy (Technical) Approaches

PTCOG 47 Educational Sessions
Massachusetts General Hospital, Harvard Medical School
Francis H. Burr Proton Therapy Center

5/08
Please Do Not Use without reference J. Flanz 2008
Thanks to:

- Ugo Amaldi
- Regis Ferrand
- Yves Jongen
- Detlef Kirschel
- Gerhardt Krafft
- Charlie Ma
- Rock Mackie
- Yoshiharu Mori
- Niek Schreuder
- Steve Spotts
- Nancy Flanz
- etc…

There is a rich field of development starting again with collaborations forming.

Apologies to the developers of systems that I have not mentioned.
Technical Elements of a Particle Therapy System

- **Beam Range Adjust**
 - “electronic” (accelerator)
 - “mechanical” degrader

- **Beam Delivery**
 - Beam Spreading
 - Beam/Gantry Optics
 - Organ Motion
 - Pulsed or CW Beam

- **Beam Alignment**
 - Move Patient to Beam
 - Move Beam to Patient

- **Positioning**
 - Gantry or Not
 - Specialized or General
New/Ongoing Themes in *Field* of Particle Therapy

Examples for CONTEXT:

- **Pencil Beam Scanning (PBS)**
 - Impact on: Beam Parameters from Accelerator + Delivery

- **Image Guided Therapy (IGRT)**
 - Impact on: Imaging; Beam Alignment

- **Organ Motion**
 - Impact on: Beam Parameter timing; Beam Tracking

- **Increased Throughput**
 - Positioning, Aligning, Field-to-field time, Beam time

These may not be new concepts, but they are the current foci owing to the fact that the ‘first’ round of system specs have been satisfied. (i.e. the Berkeley/MGH report of 15 years ago.)
Clinical Specification to Implementation to Equipment Requirements!

- Beam Particle
- Energy
- Current
- Position
- Size
- Time Structure
- Delivery Modality
- Stability and Reproducibility of all the above.

Range 32 cm

Field Size 30cmx40cm

Passive Scatt. Scanning

Beam Properties Appropriate

2Gy Rx Less than 1min

Change Energy < 2sec

Beam Loss

270 MeV

235 MeV + Wobbling

~215 MeV

~215 MeV

0.1-10nA

Fixed Energy Accelerator = 300nA

Paint 30 Layers < 1min

Beamline Beam Nozzle

Please Do Not Use without reference J. Flanz 2008
System Solutions vs. Specifications

• How to deliver a Rx non-uniform dose distribution to a moving target with a desired conformance (Scanning):
 vs. Continuous Beam Scanning: with 3mm Sigma
 – *This involves beam parameter TIMING issues, beam trajectory and range manipulation, etc.*

• How to deliver quality treatment to the maximum number of patients (Throughput)
 vs. Out of room setup; Energy Change in 2 seconds
 – *This involves automated remote operations*
 • Imaging and Analysis and Correction of Position
 • Go from Field to Field without delays (e.g. Moving things remotely)

• What should a ‘customer’ do?
 – Challenge Equipment Limitations - Give difficult Specs
 – Recognize Equipment Limitations - Give realistic Specs
The “Approach” you take:

Depends upon your equipment and how you use it!

Or

The Equipment you select depends upon your approach
Particle Therapy Equipment
“Complaints” and Tradeoffs

• Accelerator
 – Big and Expensive?
 • Dose Rate
 • Time Structure
 • Energy Switching

• Beam Line
 – Does one need them? (Multiple rooms)
 – Too Slow
 • Energy Switching

• Gantries
 – Big and Expensive?
 • Angles needed
 • Optics to support delivery systems

• Beam Delivery System
 – Want Scanning
 • (For all fields? Why?)
 – Change from field to field quickly

• Positioning
 – Not smooth or accurate or remote enough
 – Takes too long

• QA
 – QA Takes too long
 – End to End vs. Components

Modularity?
Mix and Match?
Particle Therapy Equipment
Reactions/Approaches to Issues

- Accelerator
 - Smaller
 - Lower / Higher Dose Rates
- Beam Line
 - Single room facilities
- Gantries
 - Limited Range of Motion
- Beam Delivery System
 - Scanning with difficult Specs
 - Minimize Patient specific devices
 - Remote operation
- Positioning
 - Robots
 - External Alignment
- QA
 - Integrated/Automated/Faster
 - Component QA?

Modularity?
Mix and Match?
One Integrated System?
Definitions of Time Structure:

DC; CW, Pulsed, Duty Factor

Duty Factor = Tb/To

Instrumentation Issues:
- Response time of Detector
- Response time of Electronics
- Saturation / Recombination

Biological
- Response time of Cell?

Examples:
- 100MHz rf ==> 1nsec / 10 nsec
- Rapid Cycling Synch ==> nsec/30 Hz

Please Do Not Use without reference J. Flanz 2008
Time Structure in Pencil Beam Scanning

Dose Driven “Spot” Scanning

Continuous Stable/Unstable. Pulsed Short or Long

Flanz – PTCOG 2008
Flexibility in Scanning?
Mixed Spot and Line / Optimization of Time & Position

Scanning at MGH See my talk on Saturday
(postpone your flight!)

Please Do Not Use without reference J. Flanz 2008
Among the many excellent Posters are the MGH/IBA/Pyramid contributions:

- Experimental mapping of proton therapy system capability to pencil-beam scanning requirements
- Experimental comparison of pencil-beam scanning methods using the gamma-index criterion
- Quality Assurance test patterns for pencil beam scanning
- Determination of the dose equivalent near proton pencil beams

Measurements, Clinical Relevance, Quality Assurance, Neutrons +
Target Motion – Tracking or Averaging

• **Target Motion and Scanning – Time Scale?**
 – Is scanning speed fast enough for tracking a target?
 – Is motion reproducible wrt respiration or body motion, or something?
 – What about range?
 – What about ‘adaptive’ TP with deforming (3D) targets.
3D Online Motion Compensation

S.O. Grözinger¹, Q. Li², E. Rietzel¹, W. Becher¹, T. Haberer¹ and G. Kraft¹

¹GSI Darmstadt; ²IMP-CAS Lanzhou, China

Tests: 0.11Hz

Fig. 1: Prototype of PMMA-wedge system for fast, passive energy modulation compensating the longitudinal component of target motion.

Fig. 2: Test of lateral compensation accuracy. A homogeneous pattern (a) is irradiated while an x-ray sensitive film is moved in a respiration-like 2D pattern. The strong motion effect (b) could automatically be compensated (c) by the prototype setup.

Please Do Not Use without reference J. Flanz 2008
Pencil Beam Scanning is PBS

- PBS is not “just” IMPT or compared with IMXT
- Intensity Modulation is required in PBS just to achieve a Single field with uniform dose.
- Additional modulation (of some sort, i.e. intensity, time, or velocity) is required to deliver a non-uniform dose.
- PBS Dose Distributions ‘can’ be better than IMXT
- **Therefore**: PBS is PBS and not IM anything.
- **Therefore**: We should Not use “IMPT”
 - Use specific forms of PBS like:
 - PBS/SFUD (Single Field Uniform Dose)
 - PBS/NUD (Non-Uniform Dose)
Subsystem: Types of Accelerators

Linac:
- Rf Linac
- CycLinac
- DWA

Cyclotron:
- Isochronous Cyclotron
- Synchro-Cyclotron
- CycFFAG

Synchrotron:
- Strong Focusing
- Weak Focusing
- Rapid Cycling
- FFA

Laser
Accelerator Development Now Underway

Why?

- Smaller
- Cheaper
- Faster
- Stronger
- Different Parameters !!!

-Proton Beam

Technovelgy.com

Please Do Not Use without reference J. Flanz 2008
Acceleration Mechanism(s)

\[\mathbf{F} = q \mathbf{E} + q \mathbf{v} \times \mathbf{B} \]

- **Physics**: Anything that can create an electric Field which accelerates a charged particle in the direction of its motion.
 - \(E \sim dB/dt \) (changing magnetic field) (betatron)
 - \(E \sim \) Applied Voltage
 - DC Voltage
 - AC Voltage
 - “Create” an Electric Field

- **Engineering**: “Efficient use of Power”
 - One time through (Linac)
 - Reuse the Electric Field
Acceleration Mechanism(s)

\[\vec{F} = q \vec{E} + q \vec{v} \times \vec{B} \]

\[F = q \cdot (-\nabla \Phi - \frac{\partial A}{\partial t} + \vec{v} \times \vec{B}) \]

- **Physics**: Anything that can create an electric Field which accelerates a charged particle in the direction of its motion.
 - \(\vec{E} \propto \frac{dB}{dt} \) (changing magnetic field) (betatron)
 - \(\vec{E} \propto \) Applied Voltage
 - DC Voltage
 - AC Voltage
 - “Create” an Electric Field

- **Engineering**: “Efficient use of Power”
 - One time through (Linac)
 - Reuse the Electric Field
Scaling DOWN Cyclotrons - Quantitatively

US/Germany/??

Smaller / Cheaper

Scaling DOWN Cyclotrons - Quantitatively

Tons

IUCF, IThemba

IBA

Varian

Still River +

Others?

Other Places????

Please Do Not Use without reference J. Flanz 2008
Single room – Less ‘compact’

Comparing Apples with Apples

$20M should NOT be compared with $140M !!!!

Please Do Not Use without reference J. Flanz 2008
Cyclotrons

- Magnetic Field
- Rf Frequency
- Energy Change
- Current
- Pulse Frequency
- Pulse Length
- Scanning Type
- Multi-Extraction

- Constant
- Constant
- Degrader (150ms – 1 sec)
- 100’s na / 100’s to 1 na
- Continuous (Rf) (~10ns) or X Hz
- Continuous (Rf) (~1ns)
- All ?
- May be possible

- Lot’s of Current at High Energy, but only Fixed energy cyclotron need it.
- Beam always available when you need it - Scanning / Organ Motion
 - (Different for SynchroCyclotrons)
- High Emittance - Gantries (if using a beam transport system)
- Energy Change speed limits (mechanical/magnetic)?
TABLE-TOP PROTON SYNCHROTRON RING FOR MEDICAL APPLICATIONS

K. Endo, K. Mishima S. Fukumoto and S. Ninomiya, KEK, Tsukuba, Japan
G. Silvestrov, BINP, Novosibirsk, Russia

<table>
<thead>
<tr>
<th></th>
<th>BINP</th>
<th>Frascati</th>
<th>KEK</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. energy (MeV)</td>
<td>200.0</td>
<td>200.0</td>
<td>200.0</td>
<td></td>
</tr>
<tr>
<td>Inj. energy (MeV)</td>
<td>1.0</td>
<td>12.0</td>
<td>2.0</td>
<td>MeV</td>
</tr>
<tr>
<td>Circumference</td>
<td>4.7</td>
<td>6.4</td>
<td>10.5</td>
<td>m</td>
</tr>
<tr>
<td>Av. diameter</td>
<td>1.5</td>
<td>2.0</td>
<td>3.3</td>
<td>m</td>
</tr>
<tr>
<td>Bending radius</td>
<td>0.43</td>
<td>0.54</td>
<td>0.72</td>
<td>m</td>
</tr>
<tr>
<td>Max. dipole field</td>
<td>5.0</td>
<td>4.0</td>
<td>3.0</td>
<td>T</td>
</tr>
<tr>
<td>Period</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Tune, x/y</td>
<td>1.4/0.45</td>
<td>1.42/0.54</td>
<td>1.4/0.75</td>
<td></td>
</tr>
<tr>
<td>Max. dispersion</td>
<td>0.4</td>
<td>0.63</td>
<td>1.0</td>
<td>m</td>
</tr>
<tr>
<td>Cell structure</td>
<td>FODB</td>
<td>BODO</td>
<td>OFOBDB</td>
<td></td>
</tr>
<tr>
<td>Total weight</td>
<td>~1</td>
<td>~1.5</td>
<td>~2</td>
<td>ton</td>
</tr>
</tbody>
</table>

Max. energy (MeV/u)	200	200	
Injection energy (MeV/u)	2	1	
Max. dipole field (T)	3	3	
Length of dipole (m)	1.126	1.126	
Bending radius (m)	0.7165	1.4331	
Number of dipoles	4	8	

2005

Figure 1: Present ring layout.
The RCMS (p)
Rapid Cycling Medical Synchrotron
the second generation

Tandem pre-injector (AES)
Synchrotron accelerator
Gantries (ACCEL)
Horizontal & eye fixed lines
Research room line

China / US
Faster / Stronger

Peggs

Please Do Not Use without reference J. Flanz 2008
Balakin Device

ProTom

• Simple
• Light
• Inexpensive

Smaller / Cheaper

Scanning Optimized Synchrotron

All non-essential equipment minimized

RUSSIA

Please Do Not Use without reference J. Flanz 2008
Synchrotrons

- Magnetic Field
- Rf Frequency
- Energy Change
- Current
- Pulse Frequency
- Pulse Length
- Scanning Type
- Multi-Extraction

- Changing
- Changing
- Acceleration Cycle (or 30Hz~sec)
- <> nanoamps
- 0.5 Hz to 30 Hz + Rf
- ~ second(s) (or usec)
- Spot / (Depends?)
- Not Easy (No)

- Enough Current.
- Beam Time Structure (maybe) - Scanning (not line?) / Organ Motion
- Lower Emittance - Gantries (if beam transport is used)
- Energy Change time linked to acceleration time.
- (RPM) At 30 Hz in 120 sec ==> 3600 pulses!

Please Do Not Use without reference J. Flanz 2008
“CycLinac” Concept

Faster / Stronger

Italy / England / IBA

IDRA - Institute for Diagnostic and Radiotherapy (Protons)

- Collaboration to build LIBO (Linac BOoster)
 - TERA, CERN, INFN (Milan and Naples)
 - 3 GHz,
 - 15.7 MV/m; tested with 62 MeV beam from LNS (INFN) cyclotron,
 - 80 kW (Modest Power),
 - small gap (8 mm)

Ugo Amaldi

Please Do Not Use without reference J. Flanz 2008
CABOTO- Carbon BOoster for Therapy in Oncology

IBA Multi Particle System

Ugo Amaldi

Please Do Not Use without reference J. Flanz 2008
CycLinac

- Magnetic Field......... Constant
- Rf Frequency.......... Constant
- Energy Change......... Linac Modules (200 Hz) (Beamline?)
- Current............... ~na
- Pulse Frequency....... 200 Hz (5msec)
- Pulse Length.......... usec
- Scanning Type......... Spot
- Multi-Extraction....... Yes

- Maybe enough Current.
- Beam Time Structure (usec pulses) - Instrum / Scan (not line) / Organ Motion
- Lower Emittance - Gantries
- Energy Change time linked to fast Rf pulses (and Beamline?).

Please Do Not Use without reference J. Flanz 2008
Fixed Field Alternating Gradient - FFAG

- Strong Focusing – Alternating Gradient Cells
- A Ring of Magnets like a Synchrotron, BUT Fixed Field like a Cyclotron.
- Beam Orbit moves within the magnets, but a very small amount, allowing small, light magnets to be used, over a wide range of momentum.
- Fast Acceleration, Variable Energy
- High Average Current (Possible large rep rate, short injection pulse)

“Macro Structure”

Or Constant
Proof of Principle Machine! 2000 KEK 500keV

(Remember when that was possible?)

“CycFFAG” - 2006 KEK 150 MeV / 100Hz at / 90% extraction efficiency

Please Do Not Use without reference J. Flanz 2008
Proton Options

New **FFAG** Options

Proton energy 230MeV
Intensity >100nA
Rep. Rate 20-100Hz, respiration mode
Diameter ~8m
Extraction fast, multi-port
RACCCAM Project - ANR Contract
(Recherche en ACCélérateur et Applications Médicales)

Bruno Autin: LPSC, collaborator
Jacques Balosso (MD): Gren. Hospital
Johann Collot: LPSC
Joris Fourrier (PhD): LPSC
Emmanuel Froidefond: LPSC
Franck Lemuet: CEA & CERN
François Méot: CEA & LPSC
Damienne Neuvéglise: SIGMAPHI
Jaroslaw Pasternak: LPSC
Thomas Planche (PhD): SIGMAPHI
Pascal Pommier (MD): Lyon Hospital

students
Matthias Grimm: Munich Univ.
Jean-Baptiste Lagrange: ENSPG

Collaboration:
AIMA, IBA

Project goals:
• Design medical installations based on FFAG principle
• Build magnet prototype
• Participate in ongoing global FFAG effort (EMMA, NuFact, etc.)

Grenoble, 8.04.2008
J. Pasternak, LPSC Grenoble
FFAG

- Magnetic Field
- Rf Frequency
- Energy Change
- Current
- Pulse Frequency
- Pulse Length
- Scanning Type
- Multi-Extraction

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Field</td>
<td>Constant</td>
</tr>
<tr>
<td>Rf Frequency</td>
<td>Varies (or Constant!)</td>
</tr>
<tr>
<td>Energy Change</td>
<td>Move Kicker</td>
</tr>
<tr>
<td>Current</td>
<td>> 100 na</td>
</tr>
<tr>
<td>Pulse Frequency</td>
<td>100 Hz</td>
</tr>
<tr>
<td>Pulse Length</td>
<td>1 usec</td>
</tr>
<tr>
<td>Scanning Type</td>
<td>Spot</td>
</tr>
<tr>
<td>Multi-Extraction</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Plenty of current (more than needed?)
- Beam Time Structure (usec pulses) - Instrum / Scanning / Organ Motion
- Lower Emittance - Gantries
- Energy Change time may be an issue
Physics: Anything that can create an electric field which accelerates a charged particle in the direction of its motion.
- \(E \sim \frac{dB}{dt} \) (changing magnetic field) (betatron)
- \(E \sim \) Applied Voltage
 - DC Voltage
 - AC Voltage
- “Create” an Electric Field

Engineering: “Efficient use of Power”
- One time through (Linac)
- Reuse the Electric Field
 - Cyclotron
 - Synchrotron
 - FFAG
DWA - Dielectric Wall Accelerator

How High Gradient Insulators Work

Conventional Insulator

- Emitted electrons repeatedly bombard surface

High Gradient Insulator

- Emitted electrons repelled from surface

Floating conductors

Smaller / Cheaper / Faster

George Caporaso et. al., LLNL

Mackey, Caporaso et. al.
DWA supports a virtual traveling wave by continuous wall excitation* accelerator

Longitudinal Electric Field Plot

*patent pending

Mackey, Caporaso et. al.
Spot Scanning and DET

- SS Spot Locations (~300)
- DET Spot Locations (~20)

For DET multiple directions or arc therapy and intensity modulation required to obtain uniform dose distributions.

Mackey, Caporaso et. al.
DWA

- Magnetic Field........... Constant
- Rf Frequency............ n/a, DC timed field
- Energy Change.......... Pulse to Pulse
- Current.................. ?
- Pulse Frequency........ 10’s Hz
- Pulse Length............ nsec
- Scanning Type.......... Distal Edge Tracking
- Multi-Extraction........ No

- Current?
- Beam Time Structure (nsec pulses) - Instrum / Scanning / Organ Motion
- Pulse to Pulse change of Energy, Beam Size, Current
- At 100sec/10Hz = 1000 pulses. (Distal Edge Tracking uses less spots.)
Acceleration Mechanism(s)

\[\vec{F} = q \vec{E} + q \vec{v} \times \vec{B} \]

\[F = q \cdot \left(-\nabla \Phi - \frac{\partial A}{\partial t} + \vec{v} \times \vec{B} \right), \]

- **Physics**: Anything that can create an electric Field which accelerates a charged particle in the direction of its motion.
 - \(E \sim dB/dt \) (changing magnetic field) (betatron)
 - \(E \sim \) Applied Voltage
 - DC Voltage
 - AC Voltage
 - “Create” an Electric Field

- **Engineering**: “Efficient use of Power”
 - One time through (Linac)
 - Reuse the Electric Field
Laser Acceleration Mechanism

- Intense Laser Pulse (10^{20} W/cm2)
 Femtosec --> Picosec
- Plasma is created which accelerates electrons OUT of the target.
- Protons from a proton rich deposit follow, being accelerated by the large Electric field generated (10^{12} V/m)
- Energy Gain of several tens of MeV, depends upon intensity of laser pulse, target capability…
- e.g. theoretical example:
 - Laser = 10^{21} W/cm2, 30 fs pulse
 - Target 2μm
 - 180 MeV

Vol 439 26 January 2006/nature04492
H. Schwoerer
Liste des projets
1- Projets de développement d’équipements laser pour la protonthérapie

- **Projet Fox Chase Center (USA)**
 - Equipement : laser femtoseconde de 20 TW (laser de 100 TW en développement)
 - Résultats actuels : production de protons de 6 MeV (spectre maxwellien) avec le 20TW

- **JAERI (Japon): « Medical laser Vallet »**
 - Equipement : Lasers 10 TW et 30 TW fonctionnant très bien
 - Résultats actuels : Beaucoup de résultats très intéressants à 5 MeV.

- **Strathclyde (Ecosse)**
 - Equipement : laser 20 TW qui sera « boosté » à 200 TW

- **Dresden (Allemagne)**
 - Equipement : laser 150 TW

- **Sherbrooke (Canada)**
 - Equipement : laser 200 TW, évolution vers le petawatt

- **Propulse (France)**
 - Equipement : laser 100 TW puis évolution rapide vers 200 et 500 TW
The Laser-Proton Facility

- Renovation completed in June 2005
- An off-campus facility for experimental studies
- Laser/target chamber/shielding installed/commissioned in Sept 2006
- Research laser-proton accelerator license granted by the State

Charlie Ma
System Design

Charlie Ma

Victor Malka

Please Do Not Use without reference J. Flanz 2008
Phys Rev:(Linz and Alonso) Laser

- Magnetic Field........ - n/a
- Rf Frequency........... - n/a, Pulsed Laser
- Energy Change........... - Pulse to Pulse (so far 58MeV (kJoules; ps)
- Current................... - .01na --> ??
- Pulse Frequency........... - (10Hz?)
- Pulse Length............. - psec
- Scanning Type........... - Spot, Distal edge ?
- Multi-Extraction........ - No

- Current? , Neutrons?
- Beam Time Structure (nsec pulses) - Instrum / Scanning / Organ Motion
- Pulse to Pulse change of Energy, Beam Size, Current
- Emittance 1um x 23 degrees - small but challenging
- 1 liter volume at 1cm spots = 1000 spots. At 100sec/10Hz = 1000 pulses.
Other Subsystems:
Positioning (incl. Gantries), Beam Delivery Systems

100-200 Tons

In-plane Gantry Color Choices

630 Tons

Please Do Not Use without reference J. Flanz 2008
Beam Size, 3 m drift, From Gantry to Isocenter

Emittance of the Beam Transported will affect the Gantry Design. (Not including Scattering)

$$X_{DIP}^2 \sim X_{ISO}^2 + L^2 \theta_{ISO}^2$$

Please Do Not Use without reference J. Flanz 2008
Issues:
- Injection Matching Optics
- Optics to Patient
- Scanning Implementation
- Other Constraints

Non-Scaling FFAG!

A lot of magnets, but VERY lightweight!

Trbojevic, BNL

Patient position

r = 3.263 m

0.6 m

+-3 mm

~1.2 m

~2.0 m
Reducing the Range of Delivery Angles

PROSCAN - PSI

Is this enough? Two Fixed Beamlines - ProCure

Why not have everything? Size, Cost, Access to Patient …

Please Do Not Use without reference J. Flanz 2008
Simple Planar System (SPS)
Marc Kats

MV
B<1.8T, Y'<=-60°
1.8m*1.36m*0.16m

SPS(60) GANTRY

Please Do Not Use without reference J. Flanz 2008
BPTC Gantry Angle Summary

Over 60% of all fields were delivered within +/- 10 degrees of cardinal angles.
Gantry Summary

- Gantry is expensive
 - Size and Weight
- Convenience of all Angles is seductive
 - But is is necessary
- It is advantageous to minimize the motion of a patient? (What does that mean?)
- Gantry Beam Optics is linked to Beam Scanning Capability
- Reliability and Maintenance

Please Do Not Use without reference J. Flanz 2008
Positioning

The Rise of the Robot

Special Purpose Niches?

Please Do Not Use without reference J. Flanz 2008
The new Robots
Smooth, Fast, Reproducible, Safe,

(Move with beam on?) Change the Field Size spec??

NAC, Orsay, Siemens, Optivus, MGH, etc.

Please Do Not Use without reference J. Flanz 2008
BPTC Positioners

Please Do Not Use without reference J. Flanz 2008
A non-Gantry for Pediatric Treatments

J. Flanz
Patent Pend.

Please Do Not Use without reference J. Flanz 2008
Clinical Beam Parameters of "Importance"

- Clinical
 - Patient Related
 - Dosimetry Related
- e.g.
 - Dose Volume Histogram
 - Gamma Index

Beam at Target (Not Accelerator)

<table>
<thead>
<tr>
<th>Sigma</th>
<th>Random</th>
<th>Random</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Systematic</td>
<td>Once</td>
<td>Repainting</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.2mm</td>
<td>0.25mm</td>
<td>0.75mm</td>
</tr>
<tr>
<td>Position</td>
<td>x</td>
<td>0.2mm</td>
<td>0.6mm</td>
</tr>
<tr>
<td>Gradient</td>
<td>4%</td>
<td>5%</td>
<td>15%</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>50:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.75mm</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

What is the Right Number?

Please Do Not Use without reference J. Flanz 2008
Conclusions?

- *Treating with particles requires a system approach.*
- *The various subsystems interact with each other and depend upon each others capabilities.*
- *Trade-offs include size, speed, intensity, of everything, (equipment, beam etc.)*
- *New Approaches are being fueled by both accelerator interests, and by the more and more demanding requirements of particle therapy.*
End Slides

PTCOG 47

Flanz