Image Guided Particle Therapy

What can we learn from conventional RT?

Håkan Nyström
Skandion, Uppsala, Sweden
Moving lung tumours
Courtesy Per Munck af Rosenschöld, Copenhagen
Which breathing manoeuvre should be used?
Stable exhale point level

Box position relative to reference point [mm]

Time [sec]

Nøttrup et al 2008
b Systematic increase in exhale point level

Nøttrup et al 2008
C Sudden shift in exhale point level

Time [sec]
4D PET/CT
Patient surface motion, AAPM TG 76, 2006
What about coaching?
Is coaching necessary?

Spontaneous respiration
Comparison: free breathing vs. coaching

Typical breathing curves without and with coaching

→ increased breathing amplitude
Typical respiratory pattern with and without coaching

Spontaneous breathing

Coached breathing

Gating window
Breath-hold techniques:
Intrafraction and interfraction variations

Lung patient no. 7 (2003-11-05)

Daily respiration from lung patient: 7

Nøttrup et al 2008
Interfraction variations

Nøttrup et al 2008
Fraction–baselines and linear regression

Fraction–baseline
linear fit
dAP

Fraction–baseline [mm]

0 5 10 15 20 25 30

Fraction number

R = -0.74

patient diameter AP [mm]

Nøttrup et al 2008
Intrafraction and interfraction variations

Relation between interfraction variation and total motion span

Nøttrup et al 2008
Fig. 3. Diaphragm position as a function of time for patient 7. Four separate daily sessions, one from each treatment week, are displayed. The reference trace (week 0) exhibited a time trend over the course of fluoroscopic recording. Subsequent sessions did not demonstrate the same trend.

Hugo et al, R&O 78 (2006) 326
sideration during the original proton therapy planning. This finding indicates that imaging during the original 4D-CT simulation can predict the pattern of tumor motion during the course of radiation therapy. However, in 1 case (Fig. 3),
In conclusion – the problem of protons for lung targets is not solved by:

- Proper selection of non-moving tumours
- Treatment planning based on 4D-CT
- Re-design of margins
- Audio-coaching of the patient
Probably a combination of many things is needed:

- Repeated (daily?) imaging
- Adaptive planning (plan of the day?)
- Advanced audio-visual coaching
- Gating (or breath hold techniques?)
- Apnea during anaesthesia?
Can audio coached 4D CT emulate free breathing during the treatment course?

THANK YOU FOR YOUR ATTENTION!

Intra- and interfraction breathing variations during curative radiotherapy for lung cancer

Trine Juhler Nøttrup*, Stine Sofia Korreman, Anders Navrsted Pedersen, Lasse Rye Aarup, Håkan Nyström, Mikael Olsen, Lena Specht

Department of Radiation Oncology, Rigshospitalet, Copenhagen, Denmark