Protons in the Clinic: Another Tool or Universal Solution?

Nancy Price Mendenhall, M.D.
PTCOG, Heidelberg
October 1, 2009
Protons: Another Tool or Universal Solution

- The Therapeutic Ratio
- Technology
- Economics
The Therapeutic Ratio

Factors impacting the ratio of probability of cure and probability of complication:

- Total dose
- Fraction size
- Overall time
- Inter-fraction interval
- Volume of tissue
- Response Modifiers
The Therapeutic Ratio

- It’s all about dose distribution...
- Most of the dose with X rays will go to non-targeted tissue...
- Most of the dose with Protons goes to targeted tissue....
Protons: Another Tool or Universal Solution?
The Therapeutic Ratio

- With appropriate technology, protons will always produce a higher therapeutic ratio.
Timing and Technology
In some clinical situations, we must await further imaging developments to refine our definition of the target maximize the potential of proton therapy

- Nuclear imaging
- Hypoxic imaging
- MR spectroscopy and diffusion imaging
- Lymphotropice nanoparticle imaging
In some clinical situations, we must await the development of more accurate treatment planning systems to maximize the potential of proton therapy.

To maximally minimize "margins" we must have a better prediction of proton range.
In some clinical situations we must await the development of more sophisticated treatment delivery modalities to maximize the potential of proton therapy:

- Scanning beam/IMPT
- Faster delivery to reduce “margin expansion” required for organ motion
In some clinical situations, we must await the development of more sophisticated tools for measuring clinical endpoints to prove the potential of proton therapy.

- Neurocognitive
- Soft tissue growth/replacement potential
- Quality of life endpoints
- Subjective elements of toxicity grading
Economics
Economics

Ideal: focus on science and patients.
Reality: cost effectiveness of protons?

- NCI
- Medicare/3rd party payors
- Other Medical specialists
- Other Radiation Oncologists
Grander Scale
Grander view of individual health care cost

Not just the cost of an episode of treatment, but the lifelong cost of a management decision

- Cost of treatment
- Cost of disease recurrence
- Cost of complication
- Cost of less functional outcome
Foresight and Farsight
Longer Term Vision

New Partners

- Public/private partners with greater resources
- Interest in long-term health of citizens
- In many cases, non-profit
Longer Term Vision

- **Built for Efficiency**
 - Facilities with full scale applications and high throughput
 - Work organized around beam time

- **Built to last**
 - De-emphasis on rapid ROI
 - Continued re-investment in technology
 - Durable and upgradable product
 - User-vendor technology guidance
Foresight and Farsight

If proton therapy improves the therapeutic ratio...

- Actual individual patient costs will decrease
 - Fewer recurrences
 - Fewer complications
 - Fewer late effects
 - Potential for hypofractionation

- Technology will evolve...
 - More efficient
 - Less expensive
The Slide Rule

February 1, 1972: $12.50
The Hewlett-Packard HP-35

February 1, 1972: $399.00
The Hewlett-Packard HP-35

February 1, 1972: $399.00

May 4, 2009: $79.99

So...
Are protons (particles) just another tool in the clinic or a universal (external beam) solution?
Foresight and Farsight

- Protons will ultimately produce the highest therapeutic ratio because of the better dose distribution.
- Technology will increase applicability and maximize proton therapy potential for increasing the therapeutic ratio.
- Economics will evolve to focus on long-term outcomes and new financing and operational models as well as new technology will improve the "cost-effectiveness."
Protons will become the universal solution for external beam radiation therapy.
Acknowledgements

Clinical Jacksonville
Nancy Price Mendenhall, MD
Randy Henderson, MD
Felicia Snead, MD
Robert Malyapa, MD, Ph.D.
Sameer Keole, MD
William Mendenhall, MD
Chip Nichols, MD
Danny Indelicato, MD
Rusty Marcus, MD
Brad Hoppe, MD
Amy Sapp, RN
Connie Patillo, RN
Kristi Helow, RN
Karen, Bunk, RN,
Gail Sarto, RN
Marilyn Hatara, RN
Maggie Simmons
Sheryl Martin
Cassie Lee
Gerry Troy, MSW
Katie Mahoney, MSW

Gainesville Team
Bob Amdur,
Bill Mendenhall
Judith Lightsey
Robert Zlotecki,
Russell Hinerman

RESDENTS
Jatinder Palla
Chihray Liu
Jonathan Li
Niranjan Bhandare
Darren Kahler
Dietmar Siemann
Jessica Kirwan

Technical
Zuofeng Li, PhD
Daniel Yeung, PhD * Rolf Slopsema, MS
Stella Flamour, PhD * Darren Kahler, PhD
Wen His, PhD * Suh Ho, PhD
George Zhae, PhD * Liyong Lin, PhD
Shri, PhD * Debbie Louis * Jeff Griesbach
David Horne * Craig McKenzie * Ben Liao
Angela Chellini * Natasha Patel * Niranjan Bhandare
Gary Barlow * Trevor Fleming * Erin St John
Kristen Morris * Ashley Moore * Ashley Bruce
Kevin Kizby * Kim Moriarty * Matt Carpenter *
Jenna Capers * Whitney Barnett * Crystal Harper
Loren Brown * Shannon Rodriguez * Scott
Benedict * Justin Alvarez *
Courtney Harden * Olga Childers * Jonathon
Childers * Jessica Munoz * Sheila Rosenheimer *
Tom Creeman * Monica Ferby * Cindy Haddock
* Donna Best * Klaida Tafani * Amy Forbes * Ray
Lewis.

Research
Amanda Prince, RN
Cindy Carroll
Chris Morris, MS
Jessica Kirwan, MA

Administrative
Stuart Klein, MBA
Holly Mostoller
Dwanda Smith
Shirley Tomlinson
Katie Rannow
Christina Leone
Kevin Hammonds
Jim Buist
Jatin Daise
Kelly McIntyre
Wendy Lawson
Thomas Williams
Thomas Allen
Melissa Spearman
Tamika Porter
Amber Willis
Katherine Mitchell
Stephanie Williams
Katie Ward
Michelle Boychuck
Jan Carbinoneau
Theresa Gilland
Judi Hensley
Judy Holland
Renee Bylinowski
Amey Walker
Nayo McPherson
Ron Redding