A novel deliver sequence and efficiency optimization algorithm for Spot-Scanning Proton Arc therapy (SPArc)

Xuanfeng Ding, Xiaoqiang Li, Jun Zhou, Craig Stevens, Yan Di, Pejman Kabolizadeh

May 24th 2018
Disclosure

• The SPArc research project is supported by:
 – Ion Beam Application S.A.
 – Beaumont Herb and Betty Fisher Research Seed Grant Award

• A patent related to the proton arc
Dosimetric limitations?

- Uncertainties
 - Range, setup, motion, etc.

- Long delivery time
 - Limits the beam number per fx

- Larger Penumbra (Spot size)

Proton Arc Therapy

3D/4D Robustness optimization
 (Liu et al)
 RaySearch Raystation
 Varian Eclipse 13

Delivery Efficiency engine
 (Cao et al, Van de Water et al)

Dynamic Collimation system
 (Hyer et al, U of Iowa)
Spot-Scanning Proton Arc (SPArc)

• A robust, delivery efficient and potential for continuous arc delivery advanced IMPT optimization algorithm
 – Prostate (PTCOG 2017)
 – Brain Hippocampus sparing (AAPM 2017)
 – Cranial SRS (ASTRO 2017)
 – Spine SRS (ASTRO 2017)
 – Bilateral Head & Neck (AAPM 2017)
 – Advanced staged lung cancer (NA-PTCOG 2016)
 – Mobile tumor – interplay (AAPM 2017)
 –

Ding X & Li X IJROBP 2016
Whole Brain Radiotherapy with Hippocampal and cochlea sparing

Figure: A representative CT slice of a patient contours and dose distribution and DVHs

Ding et al. AAPM 2017
Brain SRS

Table 1: Comparisons of various dosimetric parameters. SPArc = Spot-scanning proton arc. GKRS = Gamma Knife radiosurgery. IMPT = intensity modulated proton therapy (PTCOG annual scientific meeting 2017)

<table>
<thead>
<tr>
<th></th>
<th>SPArc</th>
<th>GKRS</th>
<th>3-field IMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conformity Index (ICRU)</td>
<td>1.97</td>
<td>2.01</td>
<td>2.48</td>
</tr>
<tr>
<td>Gradient Index</td>
<td>2.58</td>
<td>2.84</td>
<td>6.681</td>
</tr>
<tr>
<td>Brain mean dose Gy [RBE]</td>
<td>0.54</td>
<td>0.98</td>
<td>0.75</td>
</tr>
<tr>
<td>V1Gy (cc)</td>
<td>114.7</td>
<td>317.2</td>
<td>134.9</td>
</tr>
<tr>
<td>V2Gy (cc)</td>
<td>62.1</td>
<td>137.1</td>
<td>112.7</td>
</tr>
<tr>
<td>V5Gy (cc)</td>
<td>31.2</td>
<td>43.2</td>
<td>74.4</td>
</tr>
<tr>
<td>V12Gy (cc)</td>
<td>14.7</td>
<td>14.7</td>
<td>38.3</td>
</tr>
</tbody>
</table>
Interplay effects for proton therapy

- The motion of the beam could interfere with the motion of target
- May result in distortion of the planned dose distribution, local over- and under-dosage
- One of the major concerns for treating lung cancer with scanning beam proton
Single-fraction 4D dynamic dose

Patient 6, ITV volume of 402cc, S-I motion of 1.2 cm

Li et al. Radiation Oncology 2018
Dosimetric limitations?

• Uncertainties
 – Range, setup, motion .etc.

• Long delivery time
 – Limits the beam number per fx

• Larger Penumbra (Spot size)

Proton Arc Therapy
Clinical Feasibility?

- *Principles and Practice of Stereotactic Radiosurgery* by Lawrence S. Chin and William F. Regine 2015 p 87. Proton arc therapy is **not feasible nor is it necessary** to generate conformal plans.
- Dr. Yu: “intensity modulated proton arcs **would be harder, if not impossible**, to achieve with the current spot scanning technology”.
- Realistic SPArc Treatment Delivery time
- SPArc Treatment Delivery Accuracy
- Machine/Software Limitations
Magnetic Hysteresis

• Energy switching time
 – Switching from high to low energy is much faster than switching from low to high energy

Examples:
 – Takes 1s from 220MeV to 180MeV
 – Takes 4s from 180MeV to 220MeV
Original Proposal – iterative robust optimized approach

Ding X & Li X IJROBP 2016
A new approach – Energy sequence optimization

Split Control point and energy layers

Beam 1a (5°)
- 220 MeV
- 210 MeV
- 200 MeV
- 190 MeV

Beam 1 (10°)
- 220 MeV
- 210 MeV
- 200 MeV
- 190 MeV
- 180 MeV
- 170 MeV
- 160 MeV
- 150 MeV
- 140 MeV
- 130 MeV
- 120 MeV
- 110 MeV

Beam 1b (15°)
- 180 MeV
- 170 MeV
- 160 MeV
- 150 MeV
- 140 MeV
- 130 MeV
- 120 MeV
- 110 MeV

New sub-control point 1a with half of total energy layers

Remove original control point

New sub-control point 1b with another half of total energy layers
Machine limitation Small MU spots

• IBA ProteusONE clinical threshold 0.02MU per spots
• Sensitive to the noise? Delivery accuracy?
• More beam pauses

Ding et al. under review
Study design - Planning

• 5 Prostate patients
• SPArc coarse sampling = 18 beam angles
• SPArc final sample frequency = 72 sub control points
• Minimum MU per spot = 0.02 MU
• Using same objective function
 – SPArc orig
 – SPArc seq
SPArc Plan comparison
QA Experiment design

• Project and calculate the 72 sub-control points into a fix gantry
• 5cm solid water; deliver the SPArc at fixed Gantry 90
• Deliver the control point based on the CW arc sequence

Total Delivery time/
Beam Pause
Measurements and QA results

- 5cm solid water depth
- Majority of proximal end of 2D dose
 - Absolute dose comparison
 - Within 3% difference
 - 2D gamma analysis (3%/3mm)
 - Range from 95% - 100%
Total Delivery Time

Beam Pauses are around 0-10 times per delivery in both groups
Conclusion

• The new energy sequence optimization could significantly reduce the total treatment time while providing an equivalent plan quality compared to the SPArc orig.
• The current existing clinical proton system could deliver the lower MU weighting spots with minimal interruption.
• Delivery accuracy at fix gantry meets the existing QA criteria.
• To be continued...
Have we reached dosimetric limitation yet?

• Let’s spin our gantry first

How to deliver the proton arc therapy safely, accurately and efficiently?

LETTER TO THE EDITOR

Have we reached proton beam therapy dosimetric limitations? – A novel robust, delivery-efficient and continuous spot-scanning proton arc (SPArc) therapy is to improve the dosimetric outcome in treating prostate cancer

Xuanfeng Ding, Xiaoyang Li, An Qin, Jun Zhou, Di Yan, Craig Stevens, Daniel Krauss and Peyman Kaboli-Zadeh

Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
Acknowledgement

• Physics group
 – Xiaoqiang Li, Ph.D.
 – Jun Zhou, Ph.D.
 – Gang Liu, M.S.
 – Di Yan, D.Sc.

• Physician group
 – Peyman Kabolizadeh, M.D., Ph.D.
 – Craig Stevens, M.D., Ph.D.

• IBA group
 – Guillaume Janssens Ph.D.
 – Antoine Pouppez
 – On-site IBA engineer team
 – IBA dosimetry group